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ABSTRACT

Spectrograms are distorted in both the spatial and dispersion directions. As

a result the data are not generally sampled on a uniform rectilinear grid of phys-

ically useful coordinates. Observers have often been required to resample their

data onto rectilinear coordinate systems in order to continue with standard meth-

ods of analysis. The rebinning process involves replacing the data with an in-

terpolating function, followed by sampling of that function at desired regular

intervals of physically useful coordinates. These interpolating functions usually

do not make full use of the information available in the data, and tend to degrade

the resolution of spectra. With modern computing resources and knowledge of

the distortions, one can construct interpolating functions that optimally repro-

duce the data. The information content of the data is preserved, without, for

example, degradation of the resolution in the spectra. This paper discusses how

to construct such interpolating functions for use in rebinning and extracting spec-

tra. While the discussion is focused on the specific application for echellograms

obtained with the MIKE spectrograph at Magellan, the method has been suc-

cessfully applied to other instruments.

Subject headings: methods: data analysis — techniques: spectroscopic

1. Introduction

For more than a century key astrophysical questions have been tackled by making ac-

curate measurements of physical quantities for astronomical objects. Numerous examples

abound: measurements of galaxy redshifts have allowed us to deduce the presence of dark

matter in clusters (Smith 1936, and subsequent work); measurements of stellar velocities
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allow us to deduce the presence of planets around other stars (Marcy & Butler 1992, and

subsequent work); measurements of weak absorption features of Uranium and other radioac-

tive species allow us to deduce the ages of the oldest stars (Fowler & Hoyle 1960, and

subsequent work); and measurements of the internal kinematics of galaxies allow us to de-

duce the masses and mass-to-light ratios of stellar systems (e.g., Burbidge et al. 1961a,b;

Kelson et al. 2000, 2002, and others). Such conclusions may be startling, revolutionary, or

mundane, but all such results depend critically on the statistical significance and accuracy

of one’s measurements. Thus our beloved standard models, hypotheses, and theoretical un-

derpinnings live and die by our ability to estimate uncertainties and make optimal use of

the available data. At every step in the long process of converting a set of observations to

reduced quantities, uncertainties are always added, information content tends to be reduced;

entropy increases. It behooves the astronomer to both minimize and estimate the added

uncertainties, though sometimes it is easier to do one than the other, and to take care not

to weaken the value of the observations through excessive degradations.

The examples given above, though by no means exhaustive, illustrate key areas of as-

trophysics that depend on the careful analysis of spectrograms. One of the last steps in

such analysis, before one can obtain reduced astrophysical quantities, involves extracting

the spectrum of an object from a two-dimensional data array. The task of extracting one-

dimensional spectra has become routine, with some variation among the commonly used

procedures (e.g. Horne 1986; Robertson 1986; Marsh 1989; Mukai 1990). Some procedures

either assume there is alignment of one of the principal axes of the data with the columns

or rows of the detector or altogether require “rectification” before (or after) modeling and

subtracting a background spectrum from the data (see, e.g. Kelson 2003, for a discussion of

background-subtraction). Often there are large distortions in the data, and line-curvature

can be sufficiently large to reduce the effective resolution of extracted spectra when a rectifi-

cation step is ignored. It is not uncommon for line-curvature to be ignored when it is only a

modest effect but this behavior is not desirable as it degrades the observations by worsening

the effective resolution of the extracted spectra. Such procedures do not make full use of the

information contained in the data and thus could hardly be called “optimal.”

Subsequent analyses of extracted spectra often require a sampling at regular wavelength

intervals, thus necessitating the resampling of either the two-dimensional spectrum prior to

extraction or the rebinning of the extracted one-dimensional spectrum.1 This paper will dis-

cuss a new method for extracting one-dimensional spectra with the aim of producing spectra

1While some analyses do not require spectra to be sampled at regular wavelength intervals, it has become
commonplace to work with spectra rebinned, for example, logarithmically in wavelength for measurements
of radial velocities or for measurements of internal kinematics.
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that may be sampled on a regular coordinate system but, more importantly, with minimal

loss of information. The algorithm involves fitting for parameterizations of the data within

the (original) distorted coordinate system. The fitting is performed using standard linear

least-squares routines, with weighting using the expected noise in the data. By minimizing

the degradation of information within the data, and by weighting the pixels appropriately,

we call the method both “maximal” and “optimal.”

Rebinning either two-dimensional or one-dimensional spectra is often thought of in sim-

ple terms. In actuality this task is a complicated convolution, one that is sufficiently complex

to be generally irreversible. The process is destructive; the observations are replaced by an

interpolating function and that function is subsequently sampled at coordinate intervals that

are typically strongly non-linear functions of the intrinsic coordinate system of the detector.

Usually the desired coordinate system has regular wavelength intervals, and in the case of

two-dimensional spectra the data are usually resampled onto a regular spatial coordinate

system as well. The new two-dimensional rebinned spectra have pixel values that come from

the interpolating function with no guarantee that the interpolating function optimally rep-

resents the data. The remainder of the data reduction and subsequent analysis thus become

strongly dependent on the quality and characteristics of the interpolating function. For data

that are not well-sampled (spatially or spectrally), the interpolating function may not even

have mathematically continuous first derivatives. The noise characteristics of such data can

become quite complicated, requiring tremendous overhead to account for the modifications

to the variances (e.g. Cardiel et al. 1998; Kelson et al. 2001, 2005). Worse still, ugly arti-

facts can be introduced into the data. By the end of a pipeline, the resulting spectra may

have very different structural characteristics on scales of a pixel compared to the underlying

spectrum that was observed.

Increased computing capacity now allows us to devise more sensible interpolating func-

tions. This paper introduces a method for constructing optimal interpolating functions

for the extraction and resampling of spectra. We focus the discussion on unresolved and

marginally-resolved continuum sources, though the procedures can be modified for extended

sources. More specifically, the context for our introduction of the algorithm is our imple-

mentation for echellograms taken with the MIKE spectrograph (Bernstein et al. 2003) on

the Clay 6.5m at Magellan. However, the procedures are straightforward to implement for

any echelle spectrograph, and can easily be adapted for single-slit single-order spectroscopy

or for multi-slit spectroscopy, substituting dependencies on aperture plate coordinates for

dependencies on spectral order.

At its most basic level the interpolating function is no longer a function of CCD co-

ordinates (i.e. row and column) but is constructed as a separable function of “rectified”
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coordinates (i.e. unique spatial and wavelength-dependent coordinates for each pixel). Ef-

ficient linear algebra libraries make the computations sufficiently easy so as to prevent the

reduction from being overly burdensome for modern computers with at least two gigabytes

of memory. We now give an overview of the procedure.

2. The Method

Two-dimensional background-subtracted spectra suffer from two problems that must be

dealt with before or during the process of extracting spectra: (1) the fact that the spectra

are not aligned exactly along the rows (or columns) of the detector and are often curved

with respect to the natural coordinate system of the detector (the y-distortion); and (2)

the general tendency for dispersers to impose wavelength-dependent line curvature onto the

two-dimensional spectra (which may have already been tilted or curved if the slit has been so

cut into the aperture plate). Furthermore, coarse pixels have typically limited the accuracy

with which one could previously deal with (1) and (2).

As in Kelson (2003), we first define the image of two-dimensional spectroscopic data as

R(x, y), where (x, y) are detector coordinates in pixels. Because of distortions imposed by

the optics, the spatial coordinate along the slit, yt, for a given pixel (x, y) is a non-linear

function, yt = Y (x, y). Furthermore, the wavelength of light, λ, incident onto a pixel (x, y)

is also a non-linear function of image position. For the purposes of constructing a sensible

interpolating function for R(x, y) (i.e. modeling the data), we are less concerned with the

actual wavelength, λ, of incident light than we are with the fact that there exists a coordinate

system, (xr, yt), in which xr is a wavelength-dependent coordinate that is orthogonal to the

spatial coordinate yt. The transformation to this system is xr = X(x, yt) such that the

wavelength of light incident on a pixel can be written λ = L(xr), where xr = X(x, Y (x, y))

and 0 ≤ xr ≤ NAXIS1 (for data arranged such that the dispersion is aligned along the rows

of the array). Thus there exists a convenient coordinate system (xr, yt) for which ∂L/∂yt = 0.

For echellograms Y is generally referred to as the order curvature and it can be measured

accurately from the edges of quartz lamp or twilight spectra.

Figure 1 illustrates the (yt, xr) coordinate systems. In the top panels we show, yt =

Y (x, y), the order curvature of a MIKE exposure. The bottom panels show a subsection

of the same MIKE data along with contours in both yt and xr. The mapping of the line

curvature, X(x, yt), can be accurately measured using comparison lamp spectra or night-sky

emission features (e.g. Kelson et al. 2000). Note that while xr and yt are physically orthogonal

coordinates, contours of xr and yt are typically not orthogonal in the (x, y) plane. Other,

non-instrumental, effects may also affect the relationship between these coordinate systems
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and coordinates on the sky (later to be referred to as yc). Some of these will be discussed

below but for now we only define the instrumental coordinate transformations.

We assume that before any such extraction procedures are performed, the data have

been bias-subtracted, flat-fielded, and background-subtracted (e.g. Kelson 2003).

2.1. Localization of Spectra

The first step is to accurately localize the object(s) to be extracted. Since we are intro-

ducing the method in the context of echelle spectroscopy, we present a simple technique for

accurately localizing the position of the object in all orders simultaneously (similar techniques

can be used in multi-object spectroscopy as well). Because of effects such as atmospheric

dispersion, object spectra may not actually follow the order curvature as measured by Y in

the previous paragraph. The procedure discussed here for localizing the object spectra will

fully take such deviations from the order curvature into account.

Within a single order (or slitlet) the mean (spatial) location of an object can be calcu-

lated by finding the first moment of the intensity distribution:

〈yt〉 =

∑
xr,yt

ytR(xr, yt)∑
xr,yt

R(xr, yt)
(1)

The first moment of an object with modest signal-to-noise ratio may be strongly affected by

cosmic-rays and other non-Gaussian sources of bad pixel values. In these cases it is often

preferred to use RM(xr, yt), a median-filtered version of R(xr, yt) using a kernel substantially

elongated along x, the wavelength-dominated coordinate in the detector array.

We note that computing the first moment of the object is mathematically identical to

a least-squares fit for the mean yt, in which one using WM(xr, yt) for weights:

χ2 =
∑
xr,yt

[WM(xr, yt)(yt − A)]2 (2)

WM(xr, yt) =
√

RM(xr, yt) (3)

This is the simplest model for the trace of an object, in which the first moment is simply a

constant: A = (
∑

W 2
Myt)/

∑
W 2

M ≡ 〈yt〉.
That formal identity between A and the first moment of the intensity distribution (more

specifically the distribution of WM) forms the basis of our method for localization. Ideally,

the objects should trace lines of constant yt in the data, However atmospheric dispersion and
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errors in the fitting of Y can lead to deviations from the ideal. Thus, we must use a higher-

order description for an object’s trace. We choose to represent the trace with higher-order

polynomials. For example, the next simplest approximation for the deviation of the object’s

“trace” from that of being parallel to the fit for the order curvature would be to compute

the first moment 〈yt〉 as a linear function of xr. For reasons that will become apparent

later, we transform the wavelength-dependent coordinate such that xl = (xr − xc)/xc where

xc = NAXIS1/2. Therefore, −1 ≤ xl ≤ 1.

One can solve for the dependence of the first moment as a linear function of the rescaled

wavelength-dependent coordinate by minimizing

χ2 =
∑
xr,yt

{WM(xr, yt)[yt − (A + Bxl)]}2 (4)

and solving for A and B:

B =
〈xlyt〉 − 〈xl〉〈yt〉
〈x2

l 〉 − 〈xl〉2 (5)

A = 〈yt〉 −B〈xl〉 (6)

For an object with flux symmetrically distributed about xl = 0, one obtains A = 〈yt〉 and

B = 〈xlyt〉/〈x2
l 〉.

The computational machinery for performing linear least-squares can be used to calcu-

late the first moment of the intensity distribution in arbitrary coordinate systems. In our

case we can calculate the trace(s) of the object spectra within the yt coordinate system. We

do so by parameterizing the first moment of the intensity distribution as a global function

of independent coordinates. For echellograms we prefer to parameterize the first moment

of the flux distribution as a two-dimensional polynomial of wavelength and spectrum order,

a)2. For multi-object spectroscopy, using either fibers or slitlets, one can use the positions

in an aperture plate as the independent coordinates on which to base the dependencies of

the first moments.

We choose to fit Legendre polynomials for the first moment. We defined xl above

and now define the rescaled spectrum order al, where al = (ao − ac)/aw, ac = 〈a〉 and

aw = [max(a) −min(a)]/2 such that the parameterization for the first moment is found by

minimizing:

χ2 =
∑
xr,yt

{
WM(xr, yt)[yt −

I∑
i=0

J∑
j=0

βi,jLi(al)Lj(xl)]
}2

(7)

2For typical MIKE blue and red spectra, the data span 70 <∼ a <∼ 100 and 40 <∼ a <∼ 70, respectively.
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where we typically use I = 6 and J = 6 for MIKE observations.

The computation of the trace of the first moment, as a function of spectrum order, allows

us to define a spatial coordinate referenced to the center of the object at every wavelength

and in every order:

yc = yt − 〈yt〉 (8)

〈yt〉 =
I∑

i=0

J∑
j=0

βi,jLi(al)Lj(xl) (9)

Figure 2 shows a subsection of MIKE data, with dotted lines indicating contours of

constant yt. The solid line indicates the location of the first moment, 〈yt〉 . Note the

curvature of the first moment with respect to the contours of yt. In this way, errors in the

curvature mapping, atmospheric dispersion, and other sources of deviation from the fitted

order curvature are properly accounted for.

2.2. Parameterization of Spatial Profiles

Parameterization of the spatial profile, as a complicated function of xl and al has sev-

eral steps, the first of which is to empirically calculate the width or scale of the object.

Fortunately, we do not need to perform a non-linear least-squares fit of, e.g., a Gaussian or

Lorentzian to the spatial profile. We find that a Gauss-Hermite decomposition of the spatial

profile works very well and is efficient to perform.

The first step in the Gauss-Hermite decomposition is to define the Gaussian that best

matches the data. Normally the fitting of a Gaussian to an intensity distribution is performed

using non-linear least-squares methods, such as commonly done using a modified Levenberg-

Marquardt method (e.g., Press et al. 1992). However, a more efficient method is to apply

the machinery of the previous section and parameterize the second moments of the flux

distribution as a polynomial function of the order and wavelength:

χ2 =
∑
xr,yt

{WM(xr, yt)[y
2
c −

U∑
u=0

V∑
v=0

γu,vLu(al)Lv(xl)]}2 (10)

We typically use U = 2 and V = 2.

The values of βi,j and γu,v determined at this point are not yet accurate enough to

proceed. However a second pass through the computation of the first and second moments,

restricting the calculation to those pixels with |yc| < 2〈y2
c 〉1/2, does result in sufficiently
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robust determinations of βi,j and γu,v. The restriction to those pixels with |yc| < 2〈y2
c 〉1/2

is only used in the second calculation of the βi,j and γu,v. One might naively think that a

cut on pixels inside twice the estimated second moment is overly strict. However the first

pass tends to over-estimate the second moment by about a third or so. Nevertheless, the

remainder of the algorithm does not require this restriction.

With the second moment of the object parameterized as a function of spectrum order,

one can now construct rescaled spatial coordinates

ys = yc/〈y2
c 〉1/2 (11)

〈y2
c 〉 =

U∑
u=0

V∑
v=0

γu,vLu(al)Lv(xl) (12)

to begin the decomposition of the spatial profile itself. Note that 〈y2
c 〉 is currently a function

of spectrum order and wavelength. In Figure 2 we show the second moment using dashed

lines. For multi-slit spectroscopy one would parameterize the second moment as functions

of coordinates in the aperture plate.

For unresolved and marginally-resolved sources we also prefer to decompose the background-

subtracted data, R, into two separate components (see also, e.g., Mukai 1990):

R(xr, yt) = S(xr, ys, al)P (ys, al, xl) (13)

where S(xr, ys, al) is the two-dimensional spectrum of the object and P (ys, al, xl) is the

spatial profile of the object. Each order has its own spatial profile and because we include

a polynomial expansion of xl, the spatial profile is allowed to vary with wavelength within

each order. Unresolved sources allow us to simplify Eq. 13 to

R(xr, yt) = S(xr, al)P (ys, al, xl) (14)

These equations define the interpolating function we are attempting to construct. Everything

up until this point in the analysis has been necessary for calculating yc and ys.

Before solving for S, we must first determine P . In our experience with data obtained

using MIKE, LRIS, LDSS2, LDSS3, DEIMOS, and IMACS, unresolved and marginally-

resolved sources have spatial profiles well-described by a finite Gauss-Hermite series:

P (ys, al, xl) =
E∑

e=0

F∑

f=0

G∑
g=0

εe,f,gLe(al)Lf (xl)Hg(ys)e
−y2

s/2 (15)

where G is typically set to 10 but can be restricted such that P is a pure Gaussian (K = 0).

For our MIKE echellograms we choose values of 1 or 2 for E and 1 or 2 for F . As can



– 9 –

be seen above, we have parameterized the Gauss-Hermite moments of the spatial profile as

Legendre polynomials of both al and xl. For multi-object spectroscopy, one implements a

dependence on metric coordinates in an aperture plate instead of spectral order. Note that

we have constructed a parameterization in which the Gauss-Hermite moments of the spatial

profiles of the object spectra are themselves dependent on order and wavelength (i.e. the

wavelength-dependent coordinate). Thus we ensure that the spatial profile can properly take

into account changes in focus across the detector.

In order to solve for εe,f,g we first adopt the approximation

P ′(ys, al, xl) = e−y2
s/2 (16)

and use Dierckx (1993) to find the B-spline S ′(xr, a) that minimizes

χ2 =
∑
xr,yt

[R(xr, yt)/P
′(ys, al, xl)− S ′(xr, a)

τ(xr, yt)

]2

(17)

τ 2(xr, yt) = R(xr, yt)/[αP ′(ys, al, xl)] + B(xr, yt)/[αP ′(ys, al, xl)
2]

+{ρ/[αP ′(ys, al, xl)]}2 (18)

where α converts counts to electrons (e−), B is the two-dimensional background image

(computed in the rectified coordinate system, a la Kelson 2003), and ρ is the read noise (in

e−). If the distortions are sufficiently small, then each order (or slitlet) may fully extend

over the same range of xr and thus S ′ can be fit as a bivariate function of (xr, a), with a knot

spacing of 1 pixel in xr, and an order knot spacing of 1 in a. However, some instruments

may have sufficiently large order curvature for a few orders to have significantly less coverage

in xr. In these cases one must fit univariate B-splines in each order separately to construct

S ′. MIKE is one such instrument that requires the order-by-order calculation of S ′. With

a priori knowledge of the blaze function, one could incorporate it and solve for a single,

order-independent S ′ as a function of wavelength, instead of xr.

The approximation S ′ can now be used to calculate the Gauss-Hermite moments, εe,f,g,

by minimizing

χ2 =
∑
xr,yt

[R(xr, yt)−
∑E

e=0

∑F
f=0

∑G
g=0 εe,f,gLe(al)Lf (xl)Hg(ys)e

−y2
s/2S ′(xr, a)

σ(xr, yt)

]2

(19)

The resulting εe,f,g coefficients for the polynomial representation of the Gauss-Hermite mo-

ments of the spatial profile. If the first and second moments have been computed with perfect

accuracy then εe,f,1 and εe,f,2 will be identically zero. In practice, however, the polynomial

representations for the first and second moments will not be perfect and these coefficients

will not be perfectly equal to zero.
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2.3. Calculation of Spectra

With the coefficients εe,f,g now computed, the spatial profile of the object, in every order

and at every wavelength, is given by Equation 15. Thus, we now proceed order-by-order (or

slitlet-by-slitlet), and fit B-splines to S = R/P (Dierckx 1993). For unresolved sources one

can fit a univariate B-spline, using only xr as the independent variable. For marginally-

resolved sources, or simply to compensate for uncertainties in the spatial profile, one can

define S as a bivariate B-spline, found by minimizing

χ2 =
∑
xr,yt

[R(xr, yt)/P (ys, al, xl)− S(xr, ys, a)

τ(xr, yt)

]2

(20)

τ(xr, yt)
2 = R(xr, yt)/[αP (ys, al, xl)] + B(xr, yt)/[αP (ys, al, xl)

2]

+{ρ/[αP (ys, al, xl)]}2 (21)

With the fitting for S, we now have an interpolating function, S(xr, ys, a)P (ys, al, xl),

that mimics the data. It has been constructed in a physically motivated coordinate system

— wavelength and location along a slit — instead of the coordinate system of the detector.

By doing so, we have fully exploited the variation in the sampling, due to line curvature and

other distortions, of the spectrum S. Thus S has fully preserved the intrinsic resolution of

the instrument, without the degradation caused by simple interpolation schemes.

Using this interpolating function, it is trivial to construct the equivalent of a one-

dimensional “extracted” spectrum. One integrates S P over yc at the desired wavelength

intervals. Because S has been defined along lines of constant xr, our resulting interpolating

function (or model for the data) contains all of the resolution of the spectrum intrinsic to

the data. Resampling this model does not degrade the resolution of the spectrum, unlike

simple traditional interpolation functions.

If one is only interested in the extracted one-dimensional spectra, then the integral

of SP is fairly insensitive to the choice of fitting a univariate or bivariate B-spline for S.

The bivariate B-spline does serve the purpose of fitting out deviations from the average

spatial profile, and for correcting other errors in the fitting of the first and second moments.

However, if the trace computed in §2.1 is reasonably accurate, then the mean of S over the

aperture of integration is mathematically conserved (though this is only strictly true if the

weighting in Equation 21 does not have a large gradient in yc).

The adoption of a bivariate B-spline for S is more computationally expensive but it does

also allow the effective spatial profile of the data to vary from the global prescription. In such

cases, one is fitting for deviations from the average spatial profile at every wavelength. This

enables, for example, extended emission lines to have spatial profiles that are substantially
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different from the overall continuum. The fitting of S as a bivariate B-spline does take some

additional care over the univariate case. One must ensure that the spatial extent of pixels

included in the fit spans more than (2ky + 2) points (or more, if interior knots are selected)

where ky is the order of the B-spline in the spatial direction.

For extended sources the Gauss-Hermite decomposition and bivariate B-spline fit for S

may not be appropriate. One can substitute other forms such as de Vaucouleurs profiles,

exponentials, univariate B-splines, or almost anything for P , so long as the deviations from

that profile at a given wavelength are not too large. In such cases, the data could be fit using

a quintic B-spline or one can employ more complicated tactics that involve the placement

of interior knots along the spatial dimension (see Dierckx 1993, for discussions of various

strategies for knot placement). We have only begun initial experiments on extended sources

and so far these have been encouraging.

Performing the extractions by “forward” modeling the data allows one to explicitly test

whether one’s interpolating function is an optimal representation of the data by explicitly

minimizing χ2. However, the interpolating function can be sampled at arbitrary coordinates

and thus one can visually inspect the quality of the fit/extraction. In Figure 3 and 4 we show

the results of a fit to MIKE data for a bright target. In this case we used a univariate B-spline

for S(xr, a). The top panels show the data, and the middle panels show the interpolating

function sampled onto the identical grid as the data. The bottom panels show the residuals

from the fit. In Figures 5 and 6 we show the fit to a faint source, in which cosmic-rays are

present in significant numbers (though iteratively down-weighted in the fitting for S).

2.4. Extension to Multiple Integrations

The decomposition of spectra using a spatial profile allows one to expand the fit for S

to include pixels from multiple integrations. One fits for S by minimizing the residuals from

M exposures:

χ2 =
M∑

m=1

∑
xr,yt

[Rm(xr, yt)/[pmPm(ys, al, xl)]− S(xr, ys, al)

τm(xr, yt)

]2

(22)

τm(xr, yt)
2 = Rm(xr, yt)/[αpmPm(ys, al, xl)] + Bm(xr, yt)/[αpmPm(ys, al, xl)

2]

+{ρ/[αpmPm(ys, al, xl)]}2 (23)

The values of Rm/Pm from multiple exposures need to be appropriately scaled to account

for variations in exposure time and atmospheric transparency. The scale factors, pm, can be
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computed, for example, by using the median values of S ′ in each exposure.3 This strategy has

been very useful in our reductions of MIKE, LDSS3, DEIMOS, and IMACS data because it

facilitates the rejection of cosmic-rays and it makes maximal use of the available information

regarding the small exposure-to-exposure variations in wavelength sampling.4

To illustrate the power of the multi-exposure fitting, we actually used this method in

constructing Figures 3 through 6. The bright source in Figures 3 and 4 was fit using three

exposures. The faint source in Figures 5 and 6 was fit using six. In this way, cosmic-rays are

easily identified, down-weighted, and excluded from the fit for S. Cosmic-rays never need to

be replaced; they can be identified and merely ignored in the construction of the interpolating

function.

2.5. Summary of Method

We have constructed an interpolating function using global parameterizations for the

first and second moments of the intensity distributions within each order of a spectrum, global

parameterizations for the Gauss-Hermite moments of the spatial profile, and B-splines for

the spectra within each order (or slitlet). These calculations are performed in each available

exposure to normalize the counts for the final calculation of a B-spline representation for

spectra that fit all exposures simultaneously. Fitting the traces and spatial profiles of all

orders in an exposure with a single, global parameterization provides tremendous power for

recovering spectra when the flux is far from a uniform distribution. Figure 7 shows this

power using the results from fitting four exposures of a z = 5.78 QSO. The figure shows

a region with wavelengths ranging from 7200Å to 8200Å. There is very little flux at these

wavelengths, but the flux is distributed over a broad (effectively random) range of xr over

the span of available orders. As a result the global parameterization for the trace and spatial

profile is well-constrained. The final panel in the figure shows that no systematic residuals

in the fit remain.

In our method, we have replaced the data with a much more complicated interpolating

function than has normally been used in standard interpolation methods and we expect that

it can accurately reproduce the data (without degrading the spatial and spectral resolution).

Our tests with high signal-to-noise ratio stellar spectra, as illustrated with the previous

figures, bear this out.

3We prefer to define pm order-by-order (using S′) to account for mild wavelength-dependencies.

4Note that in order to combine multiple exposures, one must transform the xr coordinates of the various
frames to a consistent wavelength system.
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3. Summary

We have presented an algorithm for constructing spectroscopic interpolating functions

that preserve the information content of observations. We use the machinery of least-squares

minimization to perform several moment calculations for localizing all spectra within a data

array, and for globally determining the spatial profiles of all of those spectra. Once the spatial

profiles for all spectra are known, we use bivariate B-splines to fit the residual spectra. The

resulting models of the observations are accurate representations in a least-squares sense,

making full use of the information available over the full field of the data.

The global fit for the parameters that describe the spatial profiles in each order (or

slitlet, in the case of multi-slit data) should be an important component of any method for

extracting spectra from echellograms or from multi-object data. Orders or objects which

contain low flux levels can still provide optimally extracted spectra now that their spatial

profiles can be inferred from the rest of the data. For multi-slit data, the parameterizations

can be expressed as functions of the coordinates in the multi-slit aperture plate, and objects

too faint to provide an accurate individual determination of its own spatial profile can still

be “optimally” extracted using a spatial profile determined from all objects obtained within

an exposure.

Finally, the framework presented in this paper can be used as the basis for more com-

plicated spectral extractions: that of extracting a single spectrum from multiple exposures.

Individual exposures should have their own global parameterizations for their spatial profiles

of the spectra. Then a single B-spline calculation can be made to find the average spectrum

from all observations of a target. No rebinning of any data to a common coordinate system

is required and the fit for the average spectrum can make full use all of the data in one shot.

The small shifts between exposures, both in wavelength and spatially, provide additional

constraints on the structure of the spectra on scales smaller than a pixel. The fit for the

spectrum can be weighted according to the expected noise, and individual exposures can be

weighted according to the observed counts or exposure times. By taking advantage of the

information present in all of the data, one can finally construct interpolating functions that

optimally match the observations, and by iterating the fit, one’s final interpolating functions

can be free from the cosmic-rays and other types of bogus data. With the computational

machinery available today, one no longer is required to rebin individual exposures and ex-

tracted spectra before combining the results. With proper and careful parameterizations

of the spatial profiles of one’s spectra, found by fitting all spectra within each exposure

simultaneously, one can avoid any degradation of one’s spectroscopic data.

The author would like to thank the Carnegie Observatories for supporting innovation in
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McWilliam, Luis Ho, Jon Fulbright, and others in the long process of refining the method.

Further thanks to Steve Shectman, Ian Thompson, Andy McWilliam, Marla Geha, and Mike
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Fig. 1.— A single background-subtracted MIKE exposure. (a) The full frame; (b) contours

of constant yt. The contours shown are those that correspond to the boundaries of the

orders. (c) A subsection of the data; (d) the corresponding section’s contours of constant yt

(solid lines) and xr (dotted lines). Figure 2 shows a subsection of these data, with vectors

illustrating the increasing directions of yt and xr.
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Fig. 2.— A subsection of the data in Figure 1 near 5800Å. Contours of constant yt and xr are

shown by the dotted lines. Vectors are also shown to indicate the directions of increasing yt

and xr. The first moment of the object, 〈yt〉, is shown by the solid line. The first moment is

characterized as a function of both a, the spectral order, and xr, the wavelength-dependent

coordinate. The locations of the second moment, 〈y2
c 〉1/2, are shown by the dashed lines on

either side of the first moment.
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Fig. 3.— A MIKE exposure containing several orders of a high signal-to-noise ratio spectrum

of a star. In (a) we show R(x, y), the background-subtracted spectrum. In (b) we show

S(xr, al)P (ys, al), sampled onto the same grid of coordinates over which R is defined. In

(c) we show the residuals from the fit. For these data, S was constructed as a fit to three

exposures. (d) The distribution of residuals of the single exposure with respect to the fit

to the three exposures, normalized by the expected noise. The distribution should be well-

described by a Gaussian with a standard deviation of unity, as shown by the dashed line.

The bi-weight estimators for location and scale (Beers et al. 1990) indicate a < 1% deviation

from the expected values for the first and second moments of the distribution.
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Fig. 4.— Same as in Figure 3 but for a subsection of the exposure (the same section as in

Figure 2). The bi-weight estimators for location and scale indicate a 1% deviation from the

expected values for the first and second moments of the distribution.
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Fig. 5.— Same as in Figure 3 but for a subsection of data on a faint source. For these

data the fitting for S was performed using six exposures. The distribution of residuals is

skewed slightly and the small non-Gaussiannity results from noise being dominated by the

read noise. The bi-weight estimators for location and scale indicate a 4% deviation from the

expected values for the first and second moments of the distribution.
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Fig. 6.— Same as in Figure 5 but for a redder subsection of the data, around the region

containing the A band. Again, the fit for S was performed using six exposures. The noise

is becoming dominated by that in the object (plus the background) and the distribution of

residuals is less skewed than in Figure 5. The bi-weight estimators for location and scale

indicate a 3% deviation from the expected values for the first and second moments of the

distribution.
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Fig. 7.— (a) A portion of one of four 3000s exposures of a z = 5.78 QSO. The region shows

portions of orders from 7200Å to 8200Å. (b) The fit of S(xr, al)P (ys, al) over the same region.

(c) The residuals from the fit. (d) The distribution of residuals from the fit, normalized by

the expected noise. The noise in these data is marginally dominated by the read noise. The

bi-weight estimators for location and scale indicate a 1% deviation from the expected values

for the first and second moments of the distribution.


