
Spline2 V6.0 Tutorial and User Manual

Page 1 of 15

Spline2 V6.0 Tutorial and User Manual – Unix version

Date: 1 February 2002
Author: Barend J. Thijsse

Delft University of Technology
Laboratory of Materials Science
2628 AL Delft, Netherlands

E-mail: B.J.Thijsse@tnw.tudelft.nl

0. How to navigate this document
• The purpose of spline2 is explained in Section 1. The first two paragraphs are essential.
• Section 1a briefly describes spline functions. It is non-essential reading for the impatient user.
• Autocorrelation is introduced in Section 2. This can be skipped when time pressure is heavy.
• How to use spline2, Section 3, is essential reading.
• Section 4 describes the runtime options of spline2. Skip on first reading, but know that it’s there.
• Section 4a illustrates how spline2 handles the example datafiles.
• How to use the utility program evalsp, Section 5, is essential reading.
• The numerical methods and the underlying algorithms are explained in Section 6.

1. Purpose of spline2
Spline2 is a program for freestyle data
fitting. Simply said, spline2 constructs a
smooth curve through datapoints
containing noise (Fig.1). This smooth
curve, which is considered to be the best
approximation of the “trend” in the data
(i.e., the true functional relationship), is
made available to the user as an analytic
function. The great advantage of this is
that data can be easily analyzed and
manipulated in terms of this analytic
representation – examples of such
operations are: differentiation,
determination of roots and inflection
points, Fourier transformation, or
substraction of two datasets having
different abscissae. These and other
operations can be carried out using the
accomanying utility program evalsp.

It is important to note that the user does not have to decide on the type of function that is used to
represent the data trend (e.g., exponential, polynomial, goniometric, or combinations thereof). The
program generates spline functions for this purpose, which are extremely flexible and are capable of
representing virtually any conceivable trend. Splines are briefly described in Sec. 1a and fully
discussed in Ref. [1]. There are two things that you cannot do with spline2: (1) Extrapolation
outside the data range, and (2) Fitting a theoretical curve to the data in order to assess the validity
of the theory and to estimate parameter values.

Fig. 1. Datafile example3 and result of spline2 –s –q (see Sec. 3).

Spline2 V6.0 Tutorial and User Manual

Page 2 of 15

Expressed mathematically, spline2 does the following. It is given datapoints xi, yi (i = 1, 2, .. N), of
which the values yi are assumed to contain random errors,

†

yi = f (xi) + ei. (1)

The function y = f(x) is the true relationship that the user wants to recover, and ei is the “noise
component” of yi, having the following statistical properties,

†

E(ei) = 0, (2)

†

E(ei
2) = s i

2. (3)

(Here E denotes the expectation value.) The variance

†

s i
2 of the random error in yi, a quantity that is

sometimes poorly known to the user, may be different for each datapoint. Note that the random
errors can have any magnitude, even as small as rounding errors in calculated data. By
systematically generating trial spline functions S(x) and carefully analyzing the fit-residuals ri,

†

ri = yi - S(xi), (3a)

spline2 ultimately decides in which of these trial cases the statistical properties of the fit-residuals
are the most consistent with those of ei. This then logically implies that the spline in question is the
one that resembles f(x) as closely as possible.

An important additional criterion is that given the choice between statistically equivalent candidate
splines, spline2 will select the simplest spline. In mathematical language: the spline with the
smallest number of knots (this term is dicussed below).

1a. Splines, intervals, and knots
A spline function, here generically denoted as S(x), is a piecewise polynomial function. To visualize
this, one should imagine that the datarange x1...xN is divided up – as needed – in a certain number of
intervals. The breakpoints between the intervals are called (interior) knots. The outer datapoints are
also knots. Each polynomial piece of the spline covers an interval. The polynomial pieces are
constructed in such a way that in each interior knot the polynomial pieces to the left and to the right
of the knot have the same value, the same first derivative, the same second derivative, and so on.
Only the highest derivative, a constant, is different on both sides of a knot. Taken together, these
polynomial pieces form a smooth curve, of which the “flexibility” is highly dependent on the
number of knots and their distribution along the x-axis. The principal task of spline2 is to determine
the optimal number and distribution of knots to approximate the trend in the data under
consideration.

2. Autocorrelation
Before proceeding further we first have to discuss the concept of autocorrelation, since a basic
understanding of this is needed in order to understand how spline2 works and what its output tells
you.

The noise present in many data can be considered “white”. This term expresses the fact that the
random errors in the data are independent of each other,

†

E(eie j) = 0 (i ≠ j) . (4)

Spline2 V6.0 Tutorial and User Manual

Page 3 of 15

However, it is not safe to assume that this is always true. In many cases, often without the user
knowing it, some kind of filtering or averaging process has acted on the data “after” the noise has
originated. Consider the following example. Suppose your data xi, yi are 3-point running averages of
(unknown) “parent” data xi, zi, as expressed by

†

yi = 1
3 (zi-1 + zi + zi+1) . (5)

If the z-values contain white noise,

†

zi = g(xi) + z i , (6)

†

E(z i) = 0 , (7)

†

E(z i
2) = c i

2, (8)

†

E(z iz j) = 0 (i ≠ j) . (9)

this does not mean that your y-values also contain white noise. In fact, it is not difficult to show that
– when the error variances

†

c i
2 in the z-values do not vary too much from one point to the next –

your random errors ei have the following properties:

†

E(ei) = 0, (10)

†

E(ei
2) = s i

2 ª 1
3 c i

2, (11)

†

E(eiei+n) ª
E(ei

2)(1- 1
3 | n |) (| n |< 3)

0 (| n |≥ 3)

Ï
Ì
Ó

. (12)

Two things emerge from this. First, the amplitude of the noise has reduced by a factor of ÷3 (Eq.
(11)). [This noise reduction is the reason why people average and smooth their data in the first
place.] Second, and more importantly, your noise is no longer white. Eq. (12) shows that the
random errors in neighboring datapoints have become correlated. If you would not be aware of this
(it is easily overlooked in visual inspection of the data), freestyle curve fitting may lead to very
incorrect results, since keeping the quantity E(riri+n) at the correct value is an important part of the
spline2 algorithms, as we will see in Sec. 6.

Starting with version 6.0, spline2 automatically searches for these autocorrelation effects, so that
user decisions are no longer necessary. You have to use the –s option for this, however. If not told
otherwise, spline2 assumes that the autocorrelation function is of the following type:

†

E(eiei+n)
E(ei

2)
= exp(-(xi+n - xi) /x). (13)

This exponentially decaying form is a good approximation for many practical cases. The quantity x
is called the autocorrelation length. Spline2 determines the value of x that agrees best with your
data. Uncorrelated noise has x = 0.

3. Using spline2
The easiest way to get familiar with spline2 is to start working with example data right away. (First-
time users may first need to compile spline2 and evalsp. See the appendix for this.)

The recommended way to run spline2 is to use the –s and –q options. The datafile called example3
is a good one to start with. Type:

Spline2 V6.0 Tutorial and User Manual

Page 4 of 15

spline2 example3 -s -q > /dev/null

The –s option stands for “search for autocorrelation” and the –q option stands for “quiet”. The –q
option generates output for evalsp. At first it is best to throw it away, as is done here. More on other
options later.

You should get the following output on the screen (line numbers are for reference only):

(1) spline2 version 6.0
(2) Name of data file: example3
(3) Format: x y
(4) Number of datapoints participating in spline-fit = 145
(5) Degree of spline = 3
(6) Spline approximations are tested according to the Durbin-Watson test
(7) Automatic search for autocorrelation in residuals
(8) Assumed autocorrelation function of residuals: exponential: exp(-x/ksi)
(9) Average datapoint spacing <delta x> = 1
(10) Splines with non-optimized breakpoints are allowed
(11) ksi-sweep: ++++++++++++++++ end sweep
(12) Spline-fit: rms=0.108386, dws=1.98444, l=3 (eqi) ksi=0.8 acffit=0.168573

The first 11 lines of output serve as a feedback to the user, showing what spline2 has been doing.
The last line (12) is the results line, summarizing what spline2 has found. The spline itself is written
to a file named splres (see Fig. 1 for a plot). We will discuss these issues in turn.

The datafile and the user estimates of the uncertainties in the data. Lines (2)-(4) give feedback
about the data fed to spline2. The name of the datafile and the number of datapoints need no
explanation. The Format line indicates that the data file is a 2-column file, where each line contains
the x, y value pair of a single datapoint. The two numbers should be separated by “white space”,
i.e., by any number of spaces or tabs. In the datafile the x-values should appear in increasing order.
This is the standard datafile format. The only other allowed format is “x y s”. In this 3-column
format each value pair xi, yi is followed by a positive number si, being an estmate of the uncertainty
si in the ith point,

si is the user estmate of si. (14)

For a 2-column datafile the uncertainty estimates si of all datapoints are given the arbitrary value
1. What this actually means is that all datapoints are given the same relative weight in the fit. This
principle of relativity also applies to the 3-column case, in which the estimates si are specified: only
the relative values of si matter, not the absolute values.

Line (5) gives the polynomial degree of the spline. Cubic splines are standard, as they suffice for
most purposes. The degree of the spline can be altered by the –k option, see Sec. 4. Bear in mind
that a higher degree does not necessarily lead to a better or more flexible curve, since spline2 uses
the number of knots and the knot distribution to control the flexibility of the spline, which are very
powerful for this purpose.

Line (6) reports that the statistical “goodness-of-fit” test applied is the Durbin-Watson test [2].
This is contrary to the c2-test that is normally applied when a theoretical function with a fixed
number of parameters is fitted to data. The reason is that a spline can be given enormous (or even
too much) flexibility by increasing the number of knots, and the Durbin-Watson test excels in

Spline2 V6.0 Tutorial and User Manual

Page 5 of 15

restricting this flexibility, especially when the errors in the data are not precisely known. The test is
explained in Sec. 6.

Autocorrelation. Lines (7)-(9) show how spline2 attempts to detect autocorrelation effects in the
data (see Sec. 2). Other ways than the automatic search shown here (invoked by the –s option) are
discussed in Sec. 4. The average datapoint spacing on line (9),

†

Dx ≡
xN - x1

N -1
, (15)

is given only for user convenience. It is a relevant quantity to compare with, for example, the
autocorrelation length x.

Line (10) indicates that splines with non-optimized breakpoint positions are allowed. This is the
default mode. Only in very specific cases, which are often recognized by strange fit-results, the user
can use the –e option to forbid these splines. This matter has not yet been studied thouroughly.

The ksi-sweep line (11) is generated in real time, while spline2 performs its calculations. Often
spline2 is so fast that one does not see the string of plusses evolve. Each plus denotes a trial value of
the autocorrelation length x.

The data on the results line (12) are the most important:

rms=0.108386
The quantity rms is the root mean square value of the noise amplitude in the data, as determined
by spline2. The value is given relative to the user estimate, Eq. (14). To be precise,

†

rms =
1
N

s i

si

Ê

Ë
Á

ˆ

¯
˜

2

i=1

N

Â . (16)

In the example given here all values si were set equal to 1, and rms therefore expresses the actual
noise amplitude in the data. However, if the values si would have been specified (in a 3-column
file or by using the –a or –r options), and their values are correct, the value of rms would come
out as 1. If the s-values would be too small (on average) by a factor of 2, rms would come out as
2, etc.

dws=1.98444
The quantity dws is the generalized Durbin-Watson statistic for the fitted spline (see Sec. 6). A
value in the range 1.9-2.2 usually indicates a good fit. Larger values are suspect, since they may
indicate that some of the noise is fitted. Smaller values, which are very rare, definitely point to a
systematic misfit. (Side note: dws is also a very useful statistic for measuring the quality of other
types of fits to data, such as for example prescribed theoretical or model curves.)

l=3 (eqi)
The parameter l is the number of intervals of the fitted spline, see Sec. 1a. The number of
internal knots is one less than this. Unless your data are extremely complicated or sparse, l
should only be a fraction of the number of datapoints. The abbreviation “(eqi)” stands for “equal
information”, and it denotes that the fitted spline has its knots distributed so that each interval
contains the same number of datapoints (or as close to this as possible). This is synonymous with
“non-optimized breakpoints”. The other possiblility is “(opt)”, which stands for “optimized
breakpoints”.

Spline2 V6.0 Tutorial and User Manual

Page 6 of 15

ksi=0.8
The autocorrelation length x reported for the spline fit (see Sec. 2) is expressed as a number
measured on the x-axis. A value of zero or much smaller than the average data spacing ·DxÒ
indicates that the data are essentially uncorrelated. A value much larger than ·DxÒ is suspect,
because such large autocorrelation effects should normally be interpreted as part of the “trend”
between x and y.

acffit=0.168573
The quantity acffit measures how closely the autocorrelation function of the fit-residuals matches
the assumed autocorrelation function with autocorrelation length x (the previous number). When
the automatic search option is used (–s), the value reported for x is the one that – out of all trial-
values of x – leads to the smallest acffit, see Sec. 6. A value smaller than 0.2 is good, and a value
in the range 0.2-0.3 is reasonable. Larger values of acffit indicate that the assumed
autocorrelation model is probably incorrect.

File splres contains the point-to-point fit results. Its columns list the following data (top to bottom: i
= 1, 2, .. N):

column 1 column 2 column 3 column 4 column 5 column 6 column 7
abscissa ordinate spline value weighted

fit-residual
weight in fit

(user
estimate)

spline
1st

derivative

spline
2nd

derivative
x y S(x) d 1/s2 dS/dx d2S/dx2

The weighted residual di in point i (column 4) is given by

†

di ≡
ri

si

=
yi - S(xi)

si

. (17)

See Sec. 5 for how to compute the values of the spline and its derivatives in other points than the
datapoints. This is often needed for generating good plots.

Other output files are splacf, splksi, splstat, and splcall. They are not very useful for a casual user.
Their format is explained on-screen when spline2 is run without the –q option (except splcall’s
format). Section 6 is essential for understanding their contents.

4. Spline2 options
For fine-tuning the behavior of spline2, one can run the program with many options other than (or
in addition to) –s and –q, although this is not frequently needed. A brief overview of the available
options can be obtained by typing just the name of the program:

spline2

Here we will discuss the options in some detail.

-s
Performs an automatic search for autocorrelation. Using –s is usually the best choice. Sometimes,
however, one is pretty sure that the data are uncorrelated or that they have a known correlated
behavior (or one wants to test this specifically). In these cases use the –n option or –K option (or

Spline2 V6.0 Tutorial and User Manual

Page 7 of 15

both) instead of –s. A second occasion for not using the –s option is when one is certain that the
user-supplied estimates si of the uncertainties si are correct (note: their absolute values should be
correct, not just their relative values). In this case one should use –a or –r instead of –s. The –s
option is new to version 6 of spline2. The behavior of version 5 of spline2, see Ref. [3], can be
simulated by NOT using the –s, –i, –K, and –e options.

-q
The program runs in “quiet” mode. This is the preferred way. If –q is omitted, the user is given the
option of selecting a spline other than the one calculated by the program. This is almost always an
unwise thing to do. A better way is to change some of the tuning options below and repeat the fit, so
that at least one knows what one is doing. Note that for historical reasons the –q option generates
output on stdout. This output is hardly interesting for humans, because it is meant to be input for the
program evalsp, see Sec. 5.

-i index
Specifies the assumed autocorrelation function (see Eq. (13)):

index = 1 Exponential

†

exp(-Dx /x) (default)
index = 2 Gaussian

†

exp(- 1
2 (Dx /x)2)

index = 3 Linear

†

max(1- 1
2 Dx /x, 0)

index = 4 Sinc

†

sin(2Dx /x) /(2Dx /x)
All four functions have a value of roughly 0.5 if Dx = x, and die off to zero at approximately Dx =
3x. The sinc function is the only one that allows negative autocorrelation. The –i option is new to
version 6 of spline2.

-x xbeg xend
Limits the fit to the data in the range [xbeg...xend]. This is sometimes convenient for performing
fits to part of a dataset – one does not have to extract a new datafile.

-X xbeg xend
Excludes the data in the range [xbeg...xend] from the fit. This option can be used e.g. to let spline2
construct a “baseline” for a peak, by excluding the datapoints in the peak range from the fit. The –x
and –X options can be used simultaneously.

-K ksi
Imposes a fixed value of x on the assumed autocorrelation function during the autocorrelation tests
(instead of letting the program scan over a range of values, which is what –s does). The –s option
cannot be used together with –K. The –K option is new to version 6 of spline2.

-n spacing
Imposes a fixed value of the data index spacing n (see Eq. (13)) during the autocorrelation tests
(instead of a range of values, as is explained in Sec. 6). The default value is n = 1. The –n option
implies a fixed value for x (If –K is not used to set this value, x defaults to 0). The effect of the –n
option is that the autocorrelation is incompletely tested. The –s option cannot be used together with
–n.

-a value
-r value
The –a and –r options tell spline2 that it should consider the user-supplied estimates si of the
uncertainties si as being correct (their absolute values). These options have the effect that the c2-
test is used to find the best spline, and not the Durbin-Watson test. The –a and –r options have
different meanings in what they tell about the uncertainties:

Spline2 V6.0 Tutorial and User Manual

Page 8 of 15

-a value si = value (should be > 0) (one value for all datapoints)
-a 0 si = value in 3rd column of the datafile
-a -number number of significant digits (example: -a –4)
-r value si = value ⋅ |yi| (value should be > 0)
-r -value si = value ⋅ ÷|yi|

The –a and –r options can not be used together with –s, –n, or –K, since autocorrelation effects are
not tested when the c2-test is in use.

The following options are not often necessary or desired:

-e
Rejects splines with non-optimized breakpoints. The –e option is new to version 6 of spline2.

-k order
Splines of order other than 4 (cubic) are used. Note that the order of a spline is one more than its
degree.

-o lopt
Forces knot optimization to start from an “equal information” spline with lopt knots, instead of
leaving it up to spline2 to decide from which number of knots to start (see Sec. 6, algorithm steps
I.1-I.3). This can be used to prevent the outcome of a too simple spline, which the program
sometimes appears to produce for data with a rather structureless trend.

-L rejlev
Specifies a statistical rejection level other than 0.05, which is the default value (i.e., 5%). The
rejection level is the fraction of the splines that – although representing the correct trend – are
rejected, because of the unusual statistical properties of the residuals. A higher rejection level leads
to stricter testing.

4a. Spline2 in action: various example datafiles
Whereas spline2 handles the datafile example3 extremely well in automatic mode (-s), it is
instructive to see what happens if one would assume that the datapoints are uncorrelated. Running:

spline2 example3 –K 0 –q > /dev/null

leads to the following result:

 Spline-fit: rms=0.102989, dws=1.97787, l=5 (eqi) ksi=0 acffit=0.407016

This shows that acffit is considerably larger than in the example of Sec. 3, indicating that the
assumed autocorrelation function (here with x = 0) is probably incorrect. The spline needs five
intervals instead of three, and therefore – not unexpectedly – runs somewhat closer to the datapoints
(this can be concluded from the smaller rms-value). However, a visual inspection of this spline (the
green line in Fig.2) shows that the spline looks very acceptable. Some might even consider it better
than the ”automatic” spline of Sec. 3 (red line in Fig. 2), yet on the basis of full statistical
consistency spline2 prefers the red line.

If, again, one would assume that the datapoints were uncorrelated, but this time one would check
this by only looking at the correlation of immediately neighboring points:

spline2 example3 –K 0 –n 1 –q > /dev/null

Spline2 V6.0 Tutorial and User Manual

Page 9 of 15

(or: spline2 example3 –q > /dev/null)

the result one gets is:

Spline-fit: rms=0.0741955, dws=3.0843, l=68 (opt) ksi=0 acffit=1.09183

Now it becomes clear why autocorrelation effects should not be taken lightly. This spline needs no
fewer than 68 intervals, and it is very oscillatory (Fig. 3). It is clearly an incorrect approximation of
the trend underlying the data.

Shifting our attention to the data in file example1, the result of applying spline2 –s –q to these data
is shown in Fig. 4. The numerical outcome is:

Spline-fit: rms=0.974533, dws=2.03407, l=34 (opt) ksi=0.631888 acffit=0.049209
The spline needs 34 intervals and the fit shows that the data are practically uncorrelated (x = 0.63,
but ·DxÒ = 3.16). The acffit value is very good. Also, rms is nearly equal to 1. All of this makes
sense, because these data are experimental pulse count data, which were uncorrelated, and of which
the (Poisson) uncertainty estimates were precisely known (example1 is a 3-column file). This is
confirmed by a fit in which x is held fixed at 0 and n at 1, because spline2 –q yields:

Spline-fit: rms=0.961404, dws=2.02985, l=40 (opt) ksi=0 acffit=0.0317353
The resulting spline, not shown, is not exactly the same as the one in Fig. 4 (more intervals are
needed), but the difference is small. Finally, forcing the uncertainty estimates to be taken as correct
leads to the same spline as the one resulting from the “automatic” mode. Spline2 –a 0 produces:

Spline-fit: rms=0.974533, dws=1.94891, l=34 (opt) ksi=0 acffit=0.048454
This is all quite satisfactory.

Fig. 5 shows the fit results for datafile example2. These data are those of example1 after processing
by a filter having a width of approximately two datapoints. Fig. 5 shows the results of spline2 -s –i
2 –q, i.e. of a fit for which a gaussian autocorrelation function was assumed. The numerical results
are:

Spline-fit: rms=51.2616, dws=2.07562, l=29 (opt) ksi=4.38149 acffit=0.31239

Fig. 2. Datafile example3 and result of spline2 –K 0 –q
(green line).

Fig. 3. Datafile example3 and result of spline2 –q.

Spline2 V6.0 Tutorial and User Manual

Page 10 of 15

which are quite reasonable. The autocorrelation length is found to be about 1.4·DxÒ, roughly equal
to the filter width, and also the number of intervals (29) is quite reasonable. If an exponential
autocorrelation function is assumed (spline2 –s –q), the result is:

Spline-fit: rms=54.4925, dws=2.11049, l=25 (opt) ksi=5.63335 acffit=0.467772
which is only slightly less reliable (acffit is somewhat larger). However, if correlation is totally
ignored and spline2 –q is used, one finds

Spline-fit: rms=16.9967, dws=2.707, l=176 (opt) ksi=0 acffit=0.708541
Again, ignorance of correlation leads to a very bad fit. All the signs of noise-fitting are there: a very
large dws, an extremely large number of intervals, and a large value of acffit.

The famous [1] Titanium Heat data are shown in Fig 6. For these data ·DxÒ = 10, which makes the
data rather sparse. Running spline in automatic mode (spline2 –s –q) leads to very strange results
(red line). The outcome is a single(!) cubic polynomial for the whole data range, which is clearly
totally wrong (Fig. 6). The numerical data show a complete misfit with the autocorrelation function:

Spline-fit: rms=0.319708, dws=2.9141, l=1 (eqi) ksi=30 acffit=0.830519

Fig. 4. Datafile example1 and result of spline2 –s –q. Fig. 5. Datafile example2 and result of spline2 –s –i 2 –q.

Fig. 6. Datafile tiheat and results of spline2 –s –q (red line)
and spline2 –q (green line).

Spline2 V6.0 Tutorial and User Manual

Page 11 of 15

If –e is added, in order to forbid “eqi” splines (spline2 –s –e –q), the program starts struggling with
the data and comes up with a spline (not shown) that it does not find acceptable:

Spline-fit: rms=0.00606332, dws=2.39357, l=20 (opt) ksi=12 acffit=1.00512 (no good fit)
(DW indecisive)

It turns out that this spline runs extremely close to the datapoints (small rms), and that it has an even
larger acffit than the previous one.The solution to finding a good fit is to ignore autocorrelation
totally and apply just spline2 –q. Although we warned against this in the foregoing examples, these
data appear to need it (presumably a rare exception). The result, shown in Fig. 6 as the green line, is
characterized as:

Spline-fit: rms=0.0162182, dws=2.41782, l=8 (opt) ksi=0 acffit=0.429195

Finally, the data in example4 are an exercise for you to try. These data are model data, based on a
known analytical function f(x) to which white gaussian noise with amplitude s = 0.1 was added.
The fit found by spline2 confirms this. You should get:

Spline-fit: rms=0.107104, dws=2.06853, l=10 (eqi) ksi=0 acffit=0.105021

For a quantitative assessment of spline2 performance, model data are very useful. As an
example, we have generated three series of 100 replicas of the data of example4, for different
values of the noise amplitude s, each replica having a different set of random errors. Table I
summarizes the results of applying spline2 –s –q to these data. What we see is that s is well
estimated by spline2 (apparently somewhat on the large side) and that q(x) is close to 2 in all cases.
The average number of spline intervals systematically decreases with increasing data noise. This is
not surprising, since spline2 has less and less information available to figure out the details of the
shape of the underlying trend. The estimates of the autocorrelation lengths x are all higher than the
true value (x = 0), although the true value does lie within one standard deviation of the mean. (From
other tests it appears that there is no such bias of the x estimate when a nonzero true value is used.
Clearly, x = 0 is a special case in that smaller values can not emerge as spline2 estimates, only
larger values.) The x estimates are independent of the noise level, which is reassuring. The values of
acffit all fall within the range 0.17 ± 0.09 (slightly decreasing with increasing noise), which in this
case apparently is the range that should be associated with a good fit. In the previous examples we
have seen much lower values, however. Finally, the last line in Table I shows how well the fitted
splines approximate the true trend f(x). Obviously such results are only possible for model data.
What we find from the examples is that the fitted splines are on average a factor 2 closer to the true
trend than the noise amplitude s. As can be easily checked for other model data, especially when
correlation is introduced, this factor 2 is certainly not a general result.

5. Using evalsp
The fitted spline calculated by spline2 can be manipulated by the utility program evalsp. One way
to do this is to run spline2 with the –q option and send its output through a pipe to evalsp:

Table I. Results of spline –s –q fits to N=100 model datapoints f(x) = sin(15x) – (30/6÷(2p)) exp(–(x/6)2/2) + white
gaussian noise with amplitude s. The datarange is x = [1...100]. The results are given as mean ± standard deviation
derived from 100 replica datasets.

s = 0.1 s = 0.2 s = 0.4

s estimated from spline fit (rms) 0.109 ± 0.013 0.216 ± 0.019 0.438 ± 0.035
q(x) (dws) 2.03 ± 0.09 1.98 ± 0.08 1.94 ± 0.09
number of spline intervals (l) 8.2 ± 1.0 7.2 ± 1.0 5.4 ± 1.1
x estimated from spline fit (ksi) 0.22 ± 0.29 0.20 ± 0.30 0.23 ± 0.32
acffit 0.18 ± 0.08 0.16 ± 0.07 0.14 ± 0.06
rms deviation from true trend [S(x) – f(x)]rms 0.055 ± 0.014 0.106 ± 0.021 0.207 ± 0.043

Spline2 V6.0 Tutorial and User Manual

Page 12 of 15

spline2 datafile [options] –q | evalsp [options]

The second way is to use spline2 in stand-alone mode first, as we have did in the previous
examples, and afterwards run evalsp using the file splrep which supersp creates:

spline2 datafile [options] –q > /dev/null

evalsp splrep [options]

When evalsp runs without options, it creates a file named evlres which contains the spline and its
derivatives in 2001 equidistant points, ranging from x = x1 (the first datapoint) up to and including x
= xN (the last datapoint). The columns of the file are as follows:

column 1 column 2 column 3 column 4
abscissa spline value spline

1st derivative
spline

2nd derivative
x S(x) dS/dx d2S/dx2

Options for evalsp are:

-x xbeg xend xstep
Evaluates the spline and its derivatives in the range from x = xbeg up to and including x = xend, in
increments of xstep (instead of using the default x-range). Example: -x 10 30 0.1. Keep in mind that
extrapolation outside the data range is not possible with spline2. Results go to file evlres.

-f xfilename
Evaluates the spline and its derivatives in the x-values listed in the specified file (instead of using
the default x-range). Results go to file evlres.

-F sbeg send sstep
Calculates the complex Fourier transform F(s) of the spline in the range from s = sbeg up to and
including s = send, in increments of sstep. The Fourier transform is defined as

†

F(s) = S(x)exp(-2pisx)dx
x1

xN

Ú .

The result goes to a file named evlfour, which has the following layout:

column 1 column 2 column 3
abscissa real part of

Fourier transform
imaginary part of
Fourier transform

s Re [F(s)] Im [F(s)]

Additional options for on-screen display of certain quantities (any number of the following):

-e
Shows the minima and maxima of S(x).

-i
Shows the inflection points of S(x).

Spline2 V6.0 Tutorial and User Manual

Page 13 of 15

-v value
Inverse interpolation. Shows for which x the spline assumes the given value: S(x) = value.

-a

Shows the value of

†

S(x)dx
x1

xN

Ú .

-h [-b value]
Shows for which x the spline assumes a value half of the peak height, assuming the data have a
peak-shaped trend. Evalsp first attempts to estimate a horizontal baseline and subtracts its value
from the data. Optionally one can add the –b option to force the baseline at a certain value.

6. Numerical methods
In this section we discuss the mathematical details of the Durbin-Watson test as implemented into
spline2. We also briefly explain the steps by which spline2 finds the spline that it considers best.

The original Durbin-Watson test [2] is used on a statistic that we call Q(1,0). It is defined as

†

Q(1,0) ≡
N -1

N
(di+1 - di)2 -

di
2 , (18)

where di is the weighted fit-residual in point i (given in Eq. (17)). The following notation for
avarages is used:

†

... ≡
1
N

(...)
i=1

N

Â , (19)

†

... -
≡

1
N - n

(...)
i=1

N-n

Â , (20)

where in this case (Eq. (18)) n is equal to 1. In essence, Q(1,0) is a ratio of two estimates of the
residual variance, one based on the magnitudes of the point residuals, and one based on the serial
correlation between them. The important thing to note is that since it is a ratio, Q(1,0) is totally
insensitive to any common factor by which the weighted residuals may be incorrect. Eq. (17) shows
what this implies. It makes clear why only the relative values in the estimates of the data
uncertainties si matter (Eq. (13)), not the absolute values. This is the great advantage of the Durbin-
Watson test, since the outcome is much more insensitive to user misjudgements of the noise
magnitude than if the c2-test would be used. Durbin and Watson have calculated the statistical
properties of Q(1,0), and it is on these calculations that the statistical tests in spline2 are based. This
is less straightforward than it seems, because spline2 uses a more generalized version of the statistic
than Q(1,0), namely one that takes into account autocorrelation effects. To see how autocorrelation
comes in, we first rewrite Eq. (18) as

†

Q(1,0) ≡
N -1

N
di+1

2 -
+ di

2 -

di
2 - 2C(1,0)

Ê

Ë

Á
Á

ˆ

¯

˜
˜
, (21)

with

Spline2 V6.0 Tutorial and User Manual

Page 14 of 15

†

C(1,0) ≡
di+1di

-

di
2 . (22)

For uncorrelated data the expectation value of C(1,0) is zero, which is a statement similar to Eq. (4).
In fact, for any n the expectation value of C(n,0), defined as

†

C(n,0) ≡
di+ndi

-

di
2 , (23)

should be zero for truly white noise. Next, this quantity is generalized for the case of correlated
data, in the spirit of Eq. (13), and we introduce

†

C(n,x) ≡
di+ndi

-

di
2 - exp(-(xi+n - xi) /x - , (24)

which, again, is expected to be zero for a good fit (of course, any other assumed autocorrelation
function may take the place of the exponential function in Eq. (24)). Inserting this expression into
Eq. (21) we find as generalized Durbin-Watson statistic

†

Q(n,x) ≡
N -1

N
di+n

2 -
+ di

2 -

di
2 - 2C(n,x)

Ê

Ë

Á
Á

ˆ

¯

˜
˜
. (25)

But we are not done yet. The quantity Q(n,x) refers to one n value only, that is, the actual
autocorrelation function is compared with the assumed autocorrelation function on the basis of only
one value for the data index spacing. To obtain a comparison over a wider range of the
autocorrelation function, we take the average over several n values and arrive at our final
generalized Durbin-Watson statistic q(x):

†

q(x) ≡
1

nmax

Q(n,x)
n=1

nmax

Â . (26)

In the spline2 algorithms the value of nmax is taken large enough to let n cover the most interesting
range of the autocorrelation function,

†

nmax = int 3 x
Dx

+ 3
Ê

Ë
Á

ˆ

¯
˜ , (27)

where the average data spacing ·DxÒ is obtained from Eq. (15).

The parameter dws listed in the output of spline2 is equal to q(x) when the –s or –K options are
used. When, instead, the –n option is used, dws is equal to Q(n,x) (where x defaults to 0 if –K is
absent). When –a or –r is used, dws is equal to Q(1,0).

With this background we can now explain how spline2 does its job (when the –s option is on):

Spline2 V6.0 Tutorial and User Manual

Page 15 of 15

I. For a range of x values, from x = 0 to x = 3·DxÒ, in increments of ·DxÒ/5, spline2 executes the
following steps (details can be found in Ref. [3]):

1. A series of trial “equal-information” splines with gradually increasing numbers of knots is
fitted to the data in the least-squares sense. For each fit q(x) is calculated.
2. As soon as (a tolerant version of) the Durbin-Watson test performed on q(x) indicates that
the fit is acceptable, the spline of this fit is considered a good first approximation.
3. A second series of trial splines is fitted, starting from the first approximation just
calculated, but this time with gradually decreasing numbers of knots and with a breakpoint
optimization algorithm (Ref. [1]) activated.
4. Of all the splines of this series that are deemed acceptable by (a strict version of) the
Durbin-Watson test, the spline with the smallest number of knots is considered optimal for
the particular value of x under investigation. Side step: if none of the splines in this series is
deemed acceptable, the spline series of step 1 is extended by one more spline and the
process is repeated.
5. The parameter acffit is calculated for the optimal spline found in step 4. This parameter
measures how closely the residuals of the spline fit agree with the assumed autocorrelation
function. It is calculated according to

†

acffit(x) = min
n

C(n,x) + max
n

C(n,x) , (28)

where all n values in the range [1...nmax] are considered, see Eq. (27).

II. After the loop over x is completed, the values acffit(x) are examined. The smallest of these is
considered to represent the best corrspondence with the assumed autocorrelation function. The x
value that gave rise to this smallest acffit is then selected as the most probable value, and the
corresponding optimal spline is finally presented to the user as the overall best.

7. References
[1] C. de Boor, A Practical Guide to Splines (Springer, New York, 1978).
[2] J. Durbin and G.S. Watson, Biometrika 37 (1950) 409; Biometrika 38 (1951) 159; Biometrika
58 (1971) 1.
[3] B.J. Thijsse, M.A. Hollanders, and J. Hendrikse, Computers in Physics 12 (1998) 393.

Appendix: compilation note
Compilation of spline2 and evalsp is straightforward. Assuming that cc is the name of your C-
compiler, just type:

 cc –o spline2 spline2.c –lm
 cc –o evalsp evalsp.c –lm

No special libraries are needed. An additional code optimization flag, such as –O2, is
recommended. Note: Don’t be alarmed if the loader complains about a “multiple definition of the
symbol _lgamma”. On some Unix and Linux machines the mathematical function lgamma, which is
part of the spline2 code, is also defined as a system function.

